32 research outputs found

    Joint parameter identification, vibration and noise analysis of gearbox

    Get PDF
    A certain type of gearbox is investigated for the problem that the stiffness and damping of bearings are difficult to be accurately determined and then affect the analysis of vibration and noise of gearbox. Firstly, a coupled dynamic lumped parameter model of three-stage helical gear system with consideration of bearing stiffness, bearing damping, and transmission error is established. The modal parameters of gear system are obtained by using the experimental modal analysis method with single-input and multiple-output. The equation for joint parameter identification of gearbox is established which is based on the experimental modal analysis theory and the dynamic lumped parameter model, and subsequently the parameters of the joint are obtained by the least square method. Then, a gear-shaft-bearing- housing coupled dynamic finite element model is developed on the basis of the identified parameters, and after that the dynamic response results of gearbox are solved by using the modal superposition method and compared with the vibration test results. Finally, an acoustic boundary element model of gearbox is established by taking the dynamic response results as the acoustic boundary condition, and the surface sound pressure and radiation noise of gearbox are solved by the boundary element method (BEM), and then the results are compared with the noise test. The results show that the simulation laws and test laws are in good agreement, and thus the method of joint parameter identification, vibration and noise analysis of gearbox is feasible

    Ovarian microcystic stromal tumor with omental metastasis: the first case report and literature review

    No full text
    Abstract Background Microcystic stromal tumor (MCST) of the ovary is an extremely rare subtype of sex cord-stromal neoplasm first described by Irving and Young in 2009. Tumors from all previously reported cases (fewer than 40 total) were benign, but one was a case of ovarian MCST that reoccurred. Case presentation Herein, we present a unique single case of ovarian MCST with omental metastasis in a 47-year-old Chinese female along with its histologic and immunohistochemical profile and genetic alterations. The tumor exhibited the previously described classic microscopic features and immunoprofiles of MCST. The tumorlet in the omentum presented the same histological structures and characteristically expressed β-catenin protein (localized in the nucleus). Molecular analysis identified a point mutation (c.98C > G) in exon 3 of CTNNB1. Conclusions To the best of our knowledge, no such report has been documented for ovarian MCST with omental metastasis. The study may provide new insights into the tumor biology of MCST and provide a better understanding of this rare entity

    Effect of Pre-Stressing on the Acid-Stress Response in Bifidobacterium Revealed Using Proteomic and Physiological Approaches.

    No full text
    Weak acid resistance limits the application of Bifidobacteria as a probiotic in food. The acid tolerance response (ATR), caused by pre-stressing cells at a sublethal pH, could improve the acid resistance of Bifidobacteria to subsequent acid stress. In this study, we used Bifidobacterium longum sub. longum BBMN68 to investigate the effect of the ATR on the acid stress response (ASR), and compared the difference between the ATR and the ASR by analyzing the two-dimensional-PAGE protein profiles and performing physiological tests. The results revealed that a greater abundance of proteins involved in carbohydrate metabolism and protein protection was present after the ASR than after the ATR in Bifidobacterium. Pre-stressing cells increased the abundance of proteins involved in energy production, amino acid metabolism, and peptidoglycan synthesis during the ASR of Bifidobacterium. Moreover, after the ASR, the content of ATP, NH3, thiols, and peptidoglycan, the activity of H+-ATPase, and the maintenance of the intracellular pH in the pre-stressed Bifidobacterium cells was significantly higher than in the uninduced cells. These results provide the first explanation as to why the resistance of Bifidobacterium to acid stress improved after pre-stressing

    Ultrasonic Correction Measurement for Residual Stress in 5083 Aluminum Alloy Welded Component of High-Speed Train

    No full text
    The measurement and control of residual stresses are crucial to the structural safety of high-speed trains. The critical refraction longitudinal wave method is extensively employed for the residual stress measurement, and the correction of the influencing factors is the key to the detection accuracy. However, the existing methods mostly give purely mathematical expressions which are only applicable to their studied materials. Hence, this paper proposes the specific influence factor correction method to enhance the applicability and accuracy, and the 5083 aluminum alloy welded component is utilized for testing. Subsequently, the stress coefficient K and the compensation acoustic time under the influence of internal factors are obtained by employing the proposed method, combined with the simulation to determine the focused detection zone, the hole-drilling and X-ray methods are utilized for comparisons, and the results indicate that the test data have a good coincidence. Meanwhile, the detection errors of each zone before and after the correction are analyzed. Moreover, combined with the experimental verification, it is found that the penetration depth of a critical refraction longitudinal wave approaches its one wavelength; the corresponding study is conducted with this characteristic and concludes that in the weld zone, the longitudinal residual stresses are mainly concentrated on the surface of the measured material. Finally, the above results indicate that the proposed method can provide more accurate measurements for engineering applications
    corecore